Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hellenic J Cardiol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37944865

RESUMO

OBJECTIVE: The aim of this study was to investigate the proportion of elevated left ventricular end-diastolic pressure (LVEDP) as an indicator of diastolic function after transcatheter aortic valve replacement (TAVR) and its implication in predicting long-term mortality. METHODS: We analyzed retrospectively collected data on 3328 patients with severe aortic stenosis undergoing TAVR in our institution between July 2009 and June 2021. Patients were stratified into two groups based on invasive post-procedural LVEDP measurements: normal (<15 mmHg) vs. elevated (≥15 mmHg) LVEDP. RESULTS: Mean age of the patients was 81.6 years, and 53.3% were female. Elevated post-procedural LVEDP was identified in 2408 (72.3%) patients. The 5-year mortality rates were higher in the group with elevated LVEDP compared with the group with normal LVEDP (27.4% vs. 8.3%, p = 0.01; hazard ratio [HR] 1.22, 95% CI 1.05-1.41). A multivariate model revealed the following independent predictors of mortality after TAVR: post-procedural elevated LVEDP (HR 1.24, 95% CI 1.01-1.53), pre-procedural significant tricuspid regurgitation (HR 1.24, 95% CI 1.02-1.52) and pulmonary hypertension (PH) (HR 1.53, 95% CI 1.26-1.86). In the present study, a significant paravalvular leak after TAVR was not associated with higher mortality (HR 1.45, 95% CI-0.95-2.19, p = 0.75). CONCLUSION: Elevated post-procedural LVEDP in patients who undergo TAVR is an independent predictor of all-cause mortality. Furthermore, PH and tricuspid regurgitation were also identified as predictors of mortality. These data confirm that diastolic dysfunction is an important predictor of mortality in TAVR and should be considered to guide procedure timing, favoring an early interventional approach and management in aortic stenosis patients.

2.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240452

RESUMO

A small protein, Mitoregulin (Mtln), localizes in mitochondria and contributes to oxidative phosphorylation and fatty acid metabolism. Mtln knockout mice develop obesity on a high-fat diet, demonstrating elevated cardiolipin damage and suboptimal creatine kinase oligomerization in muscle tissue. Kidneys heavily depend on the oxidative phosphorylation in mitochondria. Here we report kidney-related phenotypes in aged Mtln knockout mice. Similar to Mtln knockout mice muscle mitochondria, those of the kidney demonstrate a decreased respiratory complex I activity and excessive cardiolipin damage. Aged male mice carrying Mtln knockout demonstrated an increased frequency of renal proximal tubules' degeneration. At the same time, a decreased glomerular filtration rate has been more frequently detected in aged female mice devoid of Mtln. An amount of Mtln partner protein, Cyb5r3, is drastically decreased in the kidneys of Mtln knockout mice.


Assuntos
Cardiolipinas , Proteínas Mitocondriais , Masculino , Feminino , Camundongos , Animais , Cardiolipinas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Rim/metabolismo , Camundongos Knockout
3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108753

RESUMO

Small peptides compose a large share of the mitochondrial proteome. Mitoregulin (Mtln) is a mitochondrial peptide known to contribute to the respiratory complex I functioning and other processes in mitochondria. In our previous studies, we demonstrated that Mtln knockout mice develop obesity and accumulate triglycerides and other oxidation substrates in serum, concomitant with an exhaustion of tricarboxylic acids cycle intermediates. Here we examined the functional role of Mtln in skeletal muscles, one of the major energy consuming tissues. We observed reduced muscle strength for Mtln knockout mice. Decrease of the mitochondrial cardiolipin and concomitant increase in monolysocardiolipin concentration upon Mtln inactivation is likely to be a consequence of imbalance between oxidative damage and remodeling of cardiolipin. It is accompanied by the mitochondrial creatine kinase octamer dissociation and suboptimal respiratory chain performance in Mtln knockout mice.


Assuntos
Cardiolipinas , Creatina , Camundongos , Animais , Cardiolipinas/metabolismo , Creatina/metabolismo , Mitocôndrias , Músculo Esquelético/metabolismo , Peptídeos/metabolismo , Camundongos Knockout , Mitocôndrias Musculares
4.
Biochimie ; 204: 136-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174793

RESUMO

Mitoregulin (Mtln) is a recently identified 56 amino acid long mitochondrial peptide conserved in vertebrates. Mtln is known to enhance function of respiratory complex I, which is likely mediated by modulation of lipid composition. To address an influence of Mtln gene on the metabolism we created knockout mice deficient in Mtln gene. In line with accumulation of triglycerides observed earlier on a model of Mtln knockout cell lines, we observed Mtln KO mice to develop obesity on a high fat diet. An increased weight gain could be attributed to enhanced fat accumulation according to the magnetic resonance live imaging. In addition, Mtln KO mice demonstrate elevated serum triglycerides and other oxidation substrates accompanied by an exhaustion of tricarboxylic acids cycle intermediates, suggesting suboptimal oxidation of respiration substrates by mitochondria lacking Mtln.


Assuntos
Mitocôndrias , Aumento de Peso , Camundongos , Animais , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Triglicerídeos/metabolismo , Camundongos Knockout , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Metabolismo dos Lipídeos
5.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682734

RESUMO

Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15-/- mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15-/- mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15-/- mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15-/- knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15-/- knockout mice a suitable model for mild mitochondriopathies.


Assuntos
Mitocôndrias , Ribossomos Mitocondriais , Animais , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA
6.
Nucleic Acids Res ; 50(W1): W690-W696, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639928

RESUMO

Multiple high-throughput omics techniques provide different angles on systematically quantifying and studying metabolic regulation of cellular processes. However, an unbiased analysis of such data and, in particular, integration of multiple types of data remains a challenge. Previously, for this purpose we developed GAM web-service for integrative metabolic network analysis. Here we describe an updated pipeline GATOM and the corresponding web-service Shiny GATOM, which takes as input transcriptional and/or metabolomic data and finds a metabolic subnetwork most regulated between the two conditions of interest. GATOM features a new metabolic network topology based on atom transition, which significantly improves interpretability of the analysis results. To address computational challenges arising with the new network topology, we introduce a new variant of the maximum weight connected subgraph problem and provide a corresponding exact solver. To make the used networks up-to-date we upgraded the KEGG-based network construction pipeline and developed one based on the Rhea database, which allows analysis of lipidomics data. Finally, we simplified local installation, providing R package mwcsr for solving relevant graph optimization problems and R package gatom, which implements the GATOM pipeline. The web-service is available at https://ctlab.itmo.ru/shiny/gatom and https://artyomovlab.wustl.edu/shiny/gatom.


Assuntos
Internet , Redes e Vias Metabólicas , Metabolômica , Software , Bases de Dados Factuais , Metabolômica/métodos , Lipidômica , Linguagens de Programação , Visualização de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...